Рынок углеводородов не только играет важнейшую роль в экономике, но и определяет основные принципы мировой политики. Зачастую именно энергоносители дают толчок к развитию целых регионов и направлений бизнеса. В нашем проекте «ТЭК 360» мы рассмотрим ключевые тренды отрасли, перспективы ее развития, влияние на другие сферы экономик.
Тема
месяца
Энергия движения

Дорога в космос: необычный выбор топлива

Звезды всегда манили к себе человека. И дорогу в космос ему открыло то же самое топливо, что он сжигал в своих печах и примитивных лампах. Правда, потребовалось многое понять и многому научиться. Тем не менее, и сегодня мы запускаем наши ракеты, используя старое доброе углеводородное топливо. Это наше прошлое, настоящие и будущее — еще на много лет. 

Ракетой называется такой летательный аппарат, который перемещается за счет реактивной силы, возникающей в результате выбрасывания части собственной массы в направлении, противоположном ее движению. Есть важный нюанс — ракета, в отличие от реактивного самолета, не использует для полета вещество из окружающей среды. То есть кроме топлива она несет в себе еще и вещество, в котором это топливо будет сгорать — так называемый окислитель.

Характеристики полета ракеты определяются тем, какую массу и с какой скоростью она выбрасывает в процессе своей работы. В идеале хорошо бы отбрасывать тяжелое вещество с большой скоростью. А для этого в ракете должен протекать процесс, который обеспечит наиболее эффективное преобразование скрытой химической энергии топлива и окислителя в кинетическую энергию реактивной струи. К сожалению, в природе так не получается.

Первые ракеты были изобретены в Древнем Китае более двух тысяч лет назад, когда каким-то образом был сделан черный порох. В этой смеси уголь был топливом, селитра — окислителем, сера — катализатором процесса. И в течение сотен лет, вплоть до начала ХХ века, именно черный порох был тем горючим, на которое надеялись энтузиасты, мечтавшие вырваться из оков земного тяготения. 

Правда, они уже понимали, что у твердого топлива есть свои принципиальные недостатки — например, горением твердого топлива в ракете практически невозможно управлять. Да и эффективность этого топлива не самая лучшая. Поэтому на заре ХХ века появилась новая идея — создать ракетный двигатель на жидком топливе, тягой которого можно управлять. 

Теоретически все выглядело очень красиво. Нужно было взять жидкое топливо, например спирт или продукт перегонки нефти, а также какой-нибудь подходящий окислитель. Встретившись, эти вещества начали бы гореть в специальной камере и вылетать с огромной скоростью из сопла, обеспечивая ракете реактивную тягу. Регулируя подачу топлива и окислителя, реактивной тягой можно управлять, выключать двигатель и запускать заново. Но на практике все оказалось гораздо сложнее.

Чтобы запустить космический корабль на орбиту, а затем спустить его на Землю, топливо потребуется дважды — при разгоне во время выхода в космос и при торможении, чтобы сойти с орбиты. Каждый маневр требует своего запаса топлива, и чем больше топлива нам надо взять с собой, тем мощнее должна быть первая ступень ракеты, которая оторвет нас от Земли. Если запускается спутник на околоземную орбиту, то соотношение полезной нагрузки к общей массе ракеты будет около 1:40. В случае лунной обитаемой экспедиции на Землю вернется всего 1/550-я стартовой массы. 

Это означает, что космические запуски для обеспечения их максимальной эффективности должны осуществляться разными ракетами-носителями, которые используют разные виды топлива и окислителя. Поначалу выбирали между спиртом и керосином, а из окислителей — между жидким кислородом и азотной кислотой. Потом стали появляться другие вещества, которые можно было применить в ракете с жидкостным двигателем. 

Военные инженеры однозначно голосовали за так называемый гептил и азотную кислоту с тетраоксидом диазота, так как ракеты на этой смеси быстрее приводились в боевое состояние. Для гражданских целей или плановых военных запусков можно было использовать другие комбинации. 

В СССР королем пилотируемых запусков стала пара «керосин + жидкий кислород», которая вывела в космос первый спутник и первого человека. Ракеты-носители семейства «Союз» по сей день являются самыми надежными «рабочими лошадками» космонавтики. Обычные грузы забрасываются на орбиту ракетами «Протон», которые летают на гептиле. 

В США также использовали и используют керосин и жидкий кислород. Однако в рамках программы «Аполлон» была применена следующая комбинация: первая ступень работала на керосине и кислороде, а вот вторая и третья — на паре «жидкий водород + жидкий кислород». Это самая эффективная пара горючего и окислителя, в дальнейшем она была применена на космических кораблях «Спейс шаттл», в советском комплексе «Буран-Энергия» и сейчас применяется в ракете Европейского космического агентства «Ариан-5». 

Водород как топливо всем хорош, в том числе и тем, что в процессе его сгорания в кислороде образуется лишь вода. Однако производство и хранение жидкого водорода весьма затратный процесс. Стремление получить более эффективное топливо побудило еще в 50-е годы начать работы по созданию своеобразного синтетического керосина, который можно было бы использовать как обычный керосин, но с гораздо более высокой эффективностью. 

Так появился синтин — искусственное топливо, получаемое в результате многоступенчатого химического процесса. И хотя оно действительно эффективнее керосина, но сложность его получения ограничивает использование, поскольку с распадом СССР на первое место вышла экономическая эффективность космических запусков. Одновременно появились и экологические ограничения. 

В начале нового века появилась еще одна проблема — ограниченность источников качественного керосина. Для ракетных двигателей нужно высококачественное горючее, но источники нефти, из которой можно получить его, отнюдь не бесконечны. Поэтому возникла идея использовать вместо керосина сжиженный природный газ. 

Метан — второй после водорода в рейтинге экологичности — при сгорании оставляет воду и углекислый газ. Хотя он энергетически менее эффективный, чем водород, но вместе с тем более эффективный, чем керосин. При этом природный газ не образует в двигателе нагар, который неминуемо образуется при сгорании керосина. А это открывает возможность для создания двигателей многоразового использования.

Конструкторы предполагают, что на сжиженном природном газе может летать первая ступень ракеты, которая после выполнения своей работы в плановом режиме вернется на космодром. Технология такого полета была отработана в системе «Энергия-Буран » и в принципе не представляет особой сложности. 

Испытания ракетных двигателей, работающих на жидком природном газе, проводились в России и США начиная с 2007 года. Это топливо дешево и широко доступно, резервы его даже на Земле практически неисчерпаемы в обозримом будущем и уж тем более в нашей Солнечной системе. 

Мы уже создали весьма прогрессивные двигатели для полетов в открытом космосе — плазменные и ионные — и вскоре сможем запустить системы с атомной (а, возможно, в будущем — и с термоядерной) энергетической установкой. Но стартовать с Земли все равно придется на ракетах, использующих энергию химических реакций. Они медлительны, но очень мощны. И газовые ракеты могут облегчить этот первый шаг на пути человека в космос.