Рынок углеводородов не только играет важнейшую роль в экономике, но и определяет основные принципы мировой политики. Зачастую именно энергоносители дают толчок к развитию целых регионов и направлений бизнеса. В нашем проекте «ТЭК 360» мы рассмотрим ключевые тренды отрасли, перспективы ее развития, влияние на другие сферы экономик.
Тема
месяца
Наука и ТЭК

Металлургия — как надо плавить металлы, чтобы они выдерживали любые условия

Развитие топливно-энергетической отрасли было бы совершенно невозможно без параллельного развития металлургии. В свою очередь, металлурги мобилизовывали для решения поставленных задач специалистов самых разных отраслей знания. Наша машинная цивилизация стоит на достижениях металлургов: они создали технику, которая не только использует топливные ресурсы, но и позволяет их добыть, транспортировать и переработать.

История металлургии, и в первую очередь металлургии железа, уходит в седую древность, когда древних энергетиков перестал удовлетворять каменный топор. Его сменил бронзовый, а потом и железный. Поначалу производство железа было примитивным — его выплавляли даже из болотной руды в примитивных плавильных горнах. Это железо было низкого качества.

И у оружейников, и у производителей инструмента тех времен была одна и та же проблема — изделия из твердого железа были крайне хрупкими и постоянно ломались, а те что, из мягкого, стремительно тупились. Над решением этой задачи колдовали веками лучшие кузнецы и алхимики своего времени. Больше всего расстраивал металлургов побочный продукт плавки — чугун. Этот сплав железа и углерода отличается твердостью, но и исключительной хрупкостью, то есть непригодный для производства чего-либо методом ковки — он просто рассыпался на куски. Его столетиями выбрасывали в отвалы. Но в ХIV веке кто-то вновь загрузил чугун в печь и переплавил его вместе с новой рудой. Это позволило наладить производство стали.

В начале XVIII века стали расти требования к качеству стали. Процесс придания стали различных качеств называется легированием, и он был известен достаточно давно, но был весьма сложным и хлопотным делом. То, что годилось для меча правителя, не годилось для заступов лопат, передаточных колес, шестерен и других изделий. В 1740 году Бенджамин Хантсмен в поисках рецепта стали для изготовления пружин и маятников разработал так называемую тигельную технологию изготовления стали, которая позволяла делать сталь разных свойств.

В первой половине XIX века Якоб Берцелиус и Иоганн Карстен смогли сформулировать представления о влиянии фосфора и серы, а также кислорода на свойства стали. Исследования показали также изменения свойств стали при добавке в ее состав других металлов. Чтобы объективно оценивать свойства различных сплавов, пришлось развивать раздел механики о прочностных свойствах, известный как «сопротивление материалов». Многие ученые отметились на этом поприще, в частности, значительный вклад внес в изучение сплавов известный физик Майкл Фарадей.

Во второй половине XIX века появились не только новые способы получения стали, но и новые потребности. В частности, была нужна сталь, которая использовалась бы для изготовления тех же самых труб, которые стали все шире использоваться в поиске и добыче нефти. Пионером в деле создания такого инструмента стал Робер Мюше, который создал в 1864 году легированную вольфрамом сталь, твердость которой не падала при нагревании, а даже росла. Появились сплавы устойчивые к истиранию, как, например, победит — сплав вольфрама и кобальта, созданный в СССР в 1929 году. Победит уже скоро 100 лет как используется для буровых коронок благодаря своей твердости и стойкости. Режущие элементы из победита используются также в пилах по камню и другом инструменте с особо тяжелыми условиями работы.

Таким образом, к началу ХХ века сформировался целый комплекс научных дисциплин, связанных с созданием новых сплавов с заданными свойствами, обусловленными конкретными нуждами промышленности.

Например, свои требования выдвигает буровая индустрия. Собственно бурильные трубы, обсадные, турбобуры и прочий инструмент должны быть изготовлены из соответствующих сплавов. Особые требования предъявляются и к трубам для магистральных нефте- и газопроводов.

Металлургия — как надо плавить металлы, чтобы они выдерживали любые испытания

Так, если до 50-х годов ХХ века трубы производились из обычной, легированной хромом или марганцем, стали, то уже в следующем десятилетии металлурги предложили трубопрокатчикам другую, более качественную, сталь. Причина была проста — обычная сталь склонна к хрупкому разрушению, которое становится тем более вероятным, чем ниже температура.

Именно поэтому сначала появилась новая кремнемарганцевая сталь, трубы из которой могли выдержать гораздо большее давление. А снижение содержания углерода повысило вязкость этой стали. Совершенствовалась также прокатка металла. Однако новые проекты поставили новые требования — трубы должны были быть еще более устойчивыми к низким температурам, металл должен был быть еще более вязким и прочным.

Сейчас российские производители, в частности Челябинский трубопрокатный завод, выпускают трубы из стали нового поколения. Эти новые сорта стали позволяют поднять рабочее давление и прокладывать трубопроводы в условиях Крайнего Севера и в холодных морях.

Ученые тем временем колдуют над новыми сплавами, которые будут востребованы уже очень скоро, — они потребуются для трубопроводов повышенного давления, поскольку повышение давления — это прямой путь и к повышению экономической эффективности трубопроводов. Буровики требуют новых инструментов — жаро- и хладостойких одновременно, прочных, но легких. Отдельная страница — это разработки металлов для установок нефте- и газохимических предприятий.


Плюс турбины тепловых электростанций, котельные и многое другое — все нуждается в своих металлах и их сплавах, которые надо рассчитать, создать, исследовать и только потом отправлять машиностроителям, которые создадут из них нужную продукцию. Так что то, что может показаться «простой железякой», на самом деле является продуктом серьезных научных исследований, конца-краю которым не видно.